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The behavior of cardinal splines interpolating elements of l~ as their degree tends
to infinity in R 1 has been determined by 1. J. Schoenberg in the 1970s. In this
paper we consider the generalized problem in R n by replacing cardinal splines by
polyharmonic cardinal splines. cL! 1994 Academic Press. Inc.

1. INTRODUCTION

The univariate cardinal spines were generalized into higher dimensional
spaces by de Boor and DeVore in 1983. The box splines introduced in
[1, 2] are believed to be a truly multivariate analogue of the cardinal
splines. A few years later, W. Madych and S. Nelson generalized the
unvariate cardinal splines in a different way. The polyharmonic cardinal
splines introduced in [4] are believed to be another multivariate analogue
of the cardinal splines. We use the generalization by W. Madych and
S. Nelson here and consider the convergence of the interpolant with
respect to certain data.

Let f(x) be a function from R n to C. If f(x) has polynomial growth, then
we can construct a function

Sk(f, x)= L f(j) Lk(x-j)
je zn

which interpolates f at all the integer lattice points, where k is an integer
such that 2k> nand L k (x) is the fundamental spline defined in [4]. Here
we investigate the conditions under which Sk (f, x) converges to f as k goes
to infinity. We devote ourselves to this problem in this paper. In Section 2,
we give definitions and some basic results about polyharmonic cardinal
splines which are mostly based on [4, 5]. In Section 3, we will study
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the interpolatory properties of certain analytic functions. In Section 4,
where the main results are, we examine the convergence properties of
polyharmonic cardinal splines.

2. NOTATION, DEFINITION, AND BASIC RESULTS

We use the standard mathematical notations for the calculus in n
variables, see [3]. By v and j.,(, we denote the multi-indices, that is, n-tuples
(v], ... , v,,) and (PI, ..., p,,) of non-negative integers. The sum I:J= 1 vj will be
denoted by Ivl. Throughout the paper, k is a given integer, so that
2k ~ n + I and x = (x l' ... , x,,). For the sake of convenience, we set

and

We denote the set of integers by Z; Z" denotes the integer lattice in
R" and Q" = (- n, n )". Elements of Z" are denoted by boldface symbols
such as j. nk represents the set of polynomials of degree less than or equal
to k.

DEFINITfON 1. Given a sequence V= {vd, jEZ", we say that vEl;(Z")
if

Ilvll ~~ = L L IT"vj I2 < 00,
• jEZ"II'I~k

i-I

e j = (0, ..., 0, 1,0, ...,0),

I.e., T j is a difference operator in the direction e;, i = 1, ... , n.

It is easy to see from the definition Ilvlll+I~21Ivlll' This includes
I; c I; + I. We call this the monotone property of I;. Recall that every
element of I; in R 1 is of polynomial growth of order k. This leads to the
following proposition.

PROPOSITION 1. Every element of I; (Z") is of polynomial growth of
order k.
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Proof The proofs in different dimensions are closely related. We proof
the result in R [ first and use the same idea to prove the general result by
induction. Suppose v=(vj)EI;(R 1

), i.e.,

There exists a constant Co independent of i such that

for all j E Z. (1)

We claim the following is true:

j E Z, i = 0, ... , k. (2)

If i=O, let Ck,I=CO ' then (2) reduces to (1). Suppose that (2) holds for
i-I, that is,

jE2. (3)

Observe
j- [

Tk-iVj=Tk-iVO+ L: Tk-i+IV,.
,~o

This implies

)-1

IT k- iV) ,,; IT k- 'vol + L: IT k-, + 1v,1 ,,; IT k- 'vol + Ck.l (1 + lil)i
,~o

,,; C~, tC 1+ iii )',

where C~,l =max,=O"k{Ck,j,ITk-ivol}.
This concludes the proof of the claim. Let i = k, then we have

(4 )

Thus the proposition holds in R [.
Suppose the proposition holds in Rn- 1, that is, if jl = (J2, ... ,jn) and

v=(vi,)El~(zn-[),i=O, 1, ...,k, then

(5)

Similarly, we claim that the relation

(6)

holds for i = 0, 1, ..., k,
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If i=O, inequality (6) holds by the definition of l~(zn). Let us suppose
inequality (6) holds for i-I, i.e.,

Recall from (4)

T k - i Tk - i + Tk - i + , + + Tk - i + 1
, vi = I vO,i, , vl,i,'" I vj}-I,h'

and

(7)

We have

T k - iV ' Eli (zn - I)
I O,lI 2 , i=O, ..., k.

IT k - i 1:<. IT k - i I+ IT k - i + , I+ + IT k - i + , II Vj "" ,VO,j, , V"j, ' • • , vii - I,il

~IT7-iVO,j,I+Ck,n_1IJII(l+U,lr-'1

~ Ci,n _ , (1 + UtI)i + Ck,n _ d 1+ UI)i

~ C i,n(1 + IW i
,

where Ck,n = 2 max i = 0,., k {Ci, n _ d. So the claim holds.
Let i =k, then inequality (6) becomes

DEFINITION 2. The linear space L~ (R n
) is defined as the class of those

tempered distributions u on R", all of whose kth order derivatives are
square integrable; in other words

For this space, a semi-inner product is given by

where the positive constants C v are specified by

1~12k = L cvev.
Ivl ~k

(8)

Many properties about this space are discussed in [3]. We list only one
that will be used later.
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PROPOSITION 2. The elements of L~ (R") are continuous functions and
there exists a linear map P on L~ (R") with the following properties:

(1) Pu is in 1tk_ 1 (R").

(2) If Q is a unisolvent set for 1tk-l (Rn), then

j Pu(x)j ~ e(l + jxjk-l)(lIuIl2,k + lIull a ),

where lIull a denotes the maximum of u on Q and e is a constant which
depends on Q but is independent of u.

(3) If Qu = u - Pu, then Qu is continuous and satisfies

where e is independent of u.

DEFINITION 3. We say a function or a distribution is a polyharmonic
cardinal spline if it is in one of the classes SHk(R") which is a subspace of
S'eW) whose elements f enjoy the following properties:

(i) fis in e2k
- n- 1(Rn) and

(ii) LJkf= 0 on R"\Z".

THEOREM 1. Given a sequence v= {Vj} El~(Z"), there is an element
fk,v(x)=LjEZnVjLk(x-j) in L~(R")(\SHdR") which interpolates v if and
only ifvEI~(Z"); and Ilfv,kIlL~~ellvIIJ~ where e is independent ofv and
Lk(x) is defined by the Fourier transform

L("')-(2 )-"/2 1~1-2k
k., - 1t ". 1"'-2 "j-2k'

,L..,JE zn., 1tJ

For more details about Proposition 2, Definition 3, and Theorem 1,
see [2-4].

Applying TV to fk,v(x) implies

T1k,v(x) =L rvvjLdx - j).
j

(9)

Taking the Fourier transform on both sides of (9) yields

fI (ei~J-1rj Jk'V(O=(~ TVvje-i<i,o) £dO. (10)
J~ 1 J

We use this equation later.
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The monotone property of I;,(zn) with respect to m, that is, l;'cl;,+l,
and Theorem 1 show that the sequence v = (v j ) E I; (zn) can be interpolated
by a polyharmonic cardinal spline Im.v E L;' (Rn) n SHm(Rn) for m > k. It is
natural to ask how 1m... behaves as m tends to infinity. In the cardinal
spline case, this question was determined by 1. J. Schoenberg (see [6]). In
our case the limit still exists. We establish some theorems in the next
section to determine the answer to our question. We conclude this section
by defining a space which is an analogue to the analytic space defined in
the cardinal spline case.

DEFINITION 4. PW~(Rn) = {u E S'(Rn) : supp(u) c Qn and D"u E L 2(W)}
for all v such that IvI= k.

If u is in this space, then D'u(x) = (2n)-1l12 SQ" g,(~) e-I<x.o d~ for some
function g, E L 2( Qn) and Ivi = k. Taking derivatives DI' on both sides of this
equation shows

D'+l'u = (2n) -n12 f (- 1)11'1 ~I'g(~) e-I<x.o d~.
Q"

Since the integrand is in L 2(Qn), we have

PROPOSITION 3. uEPW~(Rn) implies that uEPW'::(Rn) ifm>k.

3. THE INTERPOLATORY PROPERTY BETWEEN I;(zn) AND PW~(W)

A relation between I~ and PW~ is established in this section for all
integers k. When k = 0, there is a known correspondence between the space
I~ and PW~ which may be stated as follows. If

then there is a unique function

such that

F(x) E PW~

(II)

(12)

for all j. (13)

Conversely, if (12) holds and we define (v j ) by (13), then (11) holds.
We believe that there is a similar correspondence between I; and

PW; for all integers k. In order to show this, three propositions are given
below.
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PROPOSITION 4. Given v = {Vi} E I~ (zn), then for each vE zn with Ivl = k
there exists a unique function gv E L 2(Rn) such that

(T"V)j = (2n)-n/2 f gv(O ei(¢.i) d~.
Q"

For different v and J1. we have

where e(~) = (ei¢l - 1, ..., e i¢" - 1).

Proof Since v E I; (zn), the following holds

L IT"vi I
2 < W

jE 2 11

for any fixed v with Ivl = k. Then, the Riesz-Fischer theorem implies

where gv(O = (2n)-n/2{'Lj T"vje-i(i,O} XQ"(O.

Let Gv(O=i:(-O, GI'(~)=g;;(-O,and

gv,I'(O = e(OI' gv(O - e(O' gl'(O·

We have

Consider the Fourier transform of g v,l':

=0.

Since this is true for all IEZn and gv,1' in L 2 (Qn), we have gv,1' =0. I

(14 )

(15)

PROPOSITION 5. If u(x) E PW~ satisfies u(j) = 0 for all j E zn, then
u=o.
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Proof By definition if u E PW~ then

DVu(x) = (2n) -n/Z f gv(O ei<x,o d~
Qn

Since u(j) = 0, j E zn, we get gv(~) = 0 a.e., for all v such that Ivl = k. There­
fore

DVu=O

for all v with Ivl=k, i.e., uEnk_l(Rn). I

PROPOSITION 6. Given a sequence v = {vi}' if rVi = 0 for all j E zn and
all v such that Ivl =k, then there exists afunctionf(x)Enk_I(Rn) such that
f(j) = Vj for all i E zn.

Proof The proof proceeds by induction on dimensions. First, we know
that the conclusion follows in R I. Suppose that it is correct in R n

- 1. Let
v= (k, 0, ..., 0), then we have

(16)

Fix il = (Jz, .. ·,jn), then (16) implies, by the result in R\ that there exists
a functionfi2J.(x 1)=L7,:-d Ci(Jz,,-jn)x i

l such that

fi2' ·In (Jd = vi'

Claim. Jfv=(i,J1), J1=(V Z""'vn ), and 1J1I=k-i, i=O, ...,k-l, then

P'CiUd=O.

The proof of the claim is a simple application of induction on i starting
with i=k-l.

Since iIERn-l, by induction, we have a function fi(XZ, ...,Xn)E
nk _ j (R n- 1) such that}; (Jz, ...,jn) = Ci(j1)' Let f(x) = L:7~Ol };(XZ, ..., Xn) X~ .
The proposition follows. I

THEOREM 2. Given v = {V j } E I; (Rn), there exists a unique function
fE PW~(Rn) such that

(l) f(j) = vi' j E zn(Rn),

(2) Livi =d Rn IDVf(x)!z dx ~ (n/2)Zk IIvll ~,k'
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(3) LI'I ~ k ID1(xW ~ (2nt (n/2)2k Ilvll ~,k for all x in R n,

Proof Given an index v with Ivl = k, by Proposition 4, there exists a
function g, (0 E L 2( Qn) such that

(T"v)i = (2n)~n/2 f g,,(O ei<i,O d~. (17)
Q"

For simplicity we assume that g,(O=O on Rn/Qn,
Define a new function w( ~) = 0 by

where C, and e(O' are defined as above. Let W(x) = w( -x), then W(x) is
a tempered distribution. Therefore, there exists a solution which is also a
tempered distribution to the equation

Ll k F(x) = W(x).

Choose any solution F(x), then we have

that is,

Choose J1 such that IJ11 = k, multiply e(~)1' on both sides of this equation,
and use Proposition 4, then we get

(18 )

Observe

PF(j) = (2n)~n/2 f ~O ei<i,O d~
Q"

= (2n)-n/2 f e(~V F(~) ei<i.O d~
Q"

(19 )
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Multipling ueY' on both sides of (18) implies

Since It/sin tl ~ n/2 for t E ( - n/2, n/2),

(20)

(21)

Therefore, the following holds by taking the inverse Fourier transform on
both sides of (20)

(22)

This shows that FE P W~.

Equation (19) together with Proposition 6 implies the existence of a
unique function P(x)Enk _ 1 such that

F(j) + P(j) = Vj'

Let f = F + P, then f is the function for which we are looking. The unique­
ness follows from Proposition 5. Recall

1 ( 'j:)V
DVI'( ) - -- f _1,,_ (J:) i«.O dJ:

JX -(2n)n/2 Qne(~rgv" e ".

Plancherel's theorem and (20) imply

(
n)2k

="2 II vlltk'
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Again using Plancherel's theorem gives us

4. THE CONVERGENCE OF POLYHARMONIC CARDINAL SPLINES
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Many properties of the fundamental spline L m (x) will be used throughout
the proofs of the theorems in this section. Some of these properties are
listed below.

(1) LjLm(~+2nj)=(2n)-n/2, ~ERn.

(2) limm~x im(~) = (2n)-n/2 XQn(~), a.e. for ~ ERn.

(3) lim (01 ~ C > 0 if m > k and ~ E Qn, where C is a constant inde­
pendent of m, eand k.

(4) Lj I~ + 2njl2k L~(I~ + 2nj) = (2n)-n/2IeI 2k (L~(e)/L2m-dO).

(5) If gv (0 is the periodic extension of g v (0 in Qn, then

f 1~12k 1- ():)1 2 i 2 (") d): (2 )-n/2 f 1~12k i~(e) 1 ():)\2 d):
1( ):)12kgv'-, ml; '-,= n 1():)12k~ g,,'-, '-,.

Rn e '-, Q" e '-, L 2m _d 0

The first two properties are easily verified. We start with the proof of
property (3). Since i m (¢) is symmetric, we may assume ~ E (0, nt. Observe
that ItlU + 2nj)1 is an increasing function in (0, n) for all j E Z. Then

I
t I 1sup -- ~--~ 1,

rEIO.n) t+2nj 11 +2jl
(23)
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Consider

I~Isup . ~ I
~EQ" I~ + 2nJI

for all j E Z. (24)

We get the first inequality by using (23). This completes the proof of
property (3).

To prove property (4), observe

~ L' (1/1~ + 2njl4m - 2k)
~ 1~+2njI2k L~(~+2nj)=(2n)-n (~j (l/1~+2njI2m))2

= (2n)-n/21~12k ~i~(O .
L2m-k(~)

Property (5) is a simple application of property (4) because

t 1~(~~;~2k Ig'v(~W i~(O d~

= I f .1 1(~;~2k Igv(~W i~(O d~
j E Z" Q" + btl e

=f I (;)12k Igv(~W L: I~ + 2njl2k i~(~ + 2nj) d~
Q" e j E Z"

= (2n)-n/2 f 1~12k2k Igv(~W ~i~(~) d~.
Q" le(OI L2m-d~)

Now we are ready to show the main theorem.
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THEOREM 3. Given v = {vj}E/;, then the unique lunction 1m, v in
L';(R") n SHm(R") given by Theorem 1 has the property

lim 111m, v- Iv112,k = 0,
m~ 00

where Iv E PW~ (R") is given by Theorem 2.

Proof Recall from (10), (17), and (18)

e(~r Jm,v (~) = (2rc)"/2 g" (0Lm(0,

e(~ )"Jv (~)= g" (~ ),

g" (~) = g" (0 X( O.

Computing LI"I ~k c" [(25)-(26)f implies

where c" is defined in (8),
Consider

f 1~12k 2k - /'., 2
= R'le(~)12k le(~)1 I/m,v(O- Iv (~)I d~

~ Ivtk c" t. 1;(~d;:2k Ig\,(~W I(2rc)"/2 Lm(O - XQ'(~W d~.

(25)

(26)

(27)

Because limm~oo Lm(O = (2rc)-"/2 XQ'(~) holds almost everywhere in R",
Lebesgue's dominated theorem implies
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t_Qn 1;(~~;;2k Ig,(OI2 L~(O d~

=(tn -tJ 1;(~i;;2k Ig,(~W L~(O d~

=f 11(~~;;2k AL~(~) [(2n)-n/2_L 2m _dOJ Ig,(~Wd~.Qn e L 2m -dO

By Lebesgue's dominated theorem again, we have

We have just shown that for any v such that Ivl = k

lim liD '1m.v- D~r.,112 = o.
111 --+.X;

Finally, we get

lim 111m., - IvIIv = 0
m_~

(28 )

for every element of I; (zn). I

We derive the following directly from Theorem 3 together with the
monotone property of I;' (zn).

COROLLARY 1. Under the same conditions as above, we have

lim 111m.,' - IvIIv' = 0,
ffI-X

where k' >k.

THEOREM 4. Under the same condition as the theorem above, the relation

lim Im., (x) = Iv (x)
m--+cx)

holds uniformly in x on any compact subset 01 R n
•

Proof Choose any fixed pair of complementary projections P and Q
whose existence are guaranteed by Proposition 2. Then for any element u
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of L~ (R n
), we have u = Pu + Qu. Let u = fm,v - f", and consider Pu and Qu

separately. By Proposition 2 we have

i.e.,

Then the relation

lim Q(fm,., -f,,)(x) = 0
m--+CL;

holds uniformly on any compact subset of Rn
.

On the other hand, let Q be a unisolvent set of zn, then Ilfm,,,- fJa=O.
By Proposition 2 we have

IP(fm, I' - f")(x)1 :0::; C( 1 + Ixl k - 1)( Ilfm,,, - f,,112,k + Ilfm,1' - f.,11 a).

This implies

Therefore, the following holds

lim P(fm,l' - f..)(x) = 0
m -+ ex.

uniformly on any compact subset of Rn
• This completes the proof. I

COROLLARY 2. Under the same conditions as above we have

lim D'lm,l' (x) = Vf,,(x)
"' __ 'X'

uniformZv for all v on any compact subset of RI!.

Proof Let gm,l' = D'lm,l' and F., = D'l." apply Corollary 1 and
Theorem 4, and the result follows. I
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